SR&ED INSTRUCTIONS & DESCRIPTIONS BY INDUSTRY

PROJECT OUTLINE: INSTRUCTIONS FOR ENTERING DATA	D-0.2
Machinery - improve compounding equipment	D-1.1
Software – Database methodology development	D-2.1
Chemicals - Optimize DA Catalyst Recipe	D-3.1
Agriculture - Plant breeding	D-4.1

PROJECT OUTLINE: INSTRUCTIONS FOR ENTERING DATA

MEUK - suggested SR&ED project description structure

I i)	State of Existing technology: Benchmarking methods & sources for citings	Number of		Explanatory notes / results:
ii)	Internet / Google Searches Articles Patent searches Competitive methods Similar prior in-house technologies Potential components Queries to experts Other Objective(s)		internet sites articles patents products / processes products / processes products responses (specify)	
,	Performance measures	Existing benchmark	Units of measure	Performance objective
II)	<u>Technological Uncertainities</u>	Outline top 5 key variables		
III i)	for EACH ACTIVITY	define fiscal year		
	Experimentation method	Number of		Explanatory notes: justification of sample size
i a)	Analysis / simulation		alternatives	typically quickest method
i b)	Process trials		runs / samples	typically more time consuming
i c i)	Prototypes		samples	typically most time consuming
I c ii)	protoype revisions		revisions	
ii a)	<u>Results - tie to performance ob</u>	jectives in I ii) above		
ii a) ii b)	<u>Results - tie to performance ob</u> <u>Conclusions - tie to variable(s)</u>			
		in Uncertainties II)		

iv) a) Costs: labour hours by direct employees - tie to Activities in III i)

iv) b) Costs: labour \$ via contractor - tie to Activities in III i)

v) <u>Costs: materials - consumed or transformed - tie to Activities in III i)</u>

Scientific or Technological Objectives:

100

Measurement	Current Performance	Objective	Has results?
A QUANTIFIABLE OBJECTIVE (#)	1	2	Yes
OBJECTIVE #2 (E.G. COST) (\$/UNIT)	100	90	No

THE FIRST STEPS OF THE DOCUMENTATION PROCESS ARE TO;

- ATTEMPT TO DESCRIBE THE OVERALL THE OBJECTIVES IN FEW SENTENCES &

- QUANTIFY OBJECTIVE VS. CURRENT PERFORMANCE

QUANTIFICATION:

THE TAX COURT'S CONTINUALLY REITERATE THE FACT THAT, "SYSTEMATIC INVESTIGATION MUST INVOLVE EXTREMELY ACCURATE MEASUREMENTS AND SUBSEQUENT ANALYSIS OF THOSE MEASUREMENTS,"

SO WE SHOULD ATTEMPT TO PROVIDE SUCH EVIDENCE WHENEVER POSSIBLE. QUANTIFIABLE OBJECTIVES COULD INCLUDE; COST, PERFORMANCE, SIZE RESTRICTIONS, ETC.

NOTE: ONCE YOU FILE A CLAIM YOU CAN EMPOWER THE CANADA REVENUE AGENCY (CRA) REVIEWERS WITH ONLINE ACCESS TO SUPPORTING DOCUMENTS & COSTS ONLINE VIA WWW.RDBASE.NET

THIS WILL ALLOW THEM TO QUICKLY ASSESS WHAT INFORMATION MAY BE REQUIRED TO COMPLETE THE **REVIEW**.

SEE WHAT THE REVIEWER MIGHT SEE BY "LOGGING" IN AS: USERNAME: CRA@RDBASEDEMO PASSWORD: 09REVIEWER [ALL CAPITAL LETTERS]

Technology or Knowledge Base Level:

Benchmarking methods & sources for citings:

- Internet searches: 1 sites / articles -- LIST ANY RELEVENT "ARTICLES" OR REPORTS
- Patent searches: 2 patents -- NOT COMMON HOWEVER, IF DONE WE SHOULD SPECIFY SINCE STRONG **EVIDENCE**
- Competitive products or processes: 3 products -- IDENTIFY LIMITS + IF COMPETITORS HAVE DEVELOPED TECHNOLOGY CLARIFY "METHOD" NOT AVAILABLE TO US
- Similar prior in-house technologies: 4 products / processes -- THIS IS GREAT FOR BENCHMARKING (QUANTIFYING) EXISTING PERFORMANCE LIMITS AND PROBLEMS
- Potential components: 5 products -- OFTEN SUPPLIERS CAN TELL YOU HOW THEIR PRODUCTS MAY **PERFORM & PROVIDE GUIDANCE**
- Queries to experts: 6 responses -- EXPERT OPINIONS ON THE LIMITS OF TECHNOLOGY INDICATE PROJECTS ARE ELIGIBLE

ARE WE "THINKING OUTSIDE THE BOX"?

THE CRA CLARIFIES THAT:

"COMMONLY AVAILABLE SOURCES OF KNOWLEDGE OR EXPERIENCE ARE THOSE THAT CAN

- REASONABLY BE ASSUMED TO BE
- READILY AVAILABLE TO THOSE WITH BASIC TRAINING OR EXPERIENCE IN THE FIELD OF CONCERN.

THESE RESOURCES ENABLE THEM TO BE SUFFICIENTLY QUALIFIED TO PARTICIPATE IN SR&ED.

THEY ALSO INCLUDE;

- KNOWLEDGE THAT IS AVAILABLE IN THE BUSINESS CONTEXT OF THE FIRM ...

- [HOWEVER]...AN ENTERPRISE MAY NOT HAVE
 - PRACTICAL ACCESS TO INFORMATION PROPRIETARY TO A COMPETITOR.
 - OR KNOWN IN SPECIALIST OR ACADEMIC CIRCLES." [CRA IC 86-4R3 GLOSSARY]

THE GOAL IS TO SHOW THAT;

- REASONABLE STEPS WERE TAKEN TO ENSURE THAT

- THE "METHOD" TO OBTAIN THE OBJECTIVE(S) WAS NOT "READILY AVAILABLE."

Project Name: PROJECT OUTLINE: INSTRUCTIONS FOR ENTERING DATA

Start Date: 2011-01-01

Completion Date: 2012-03-31

- WE PROPOSE THAT THE LIST ABOVE REPRESENTS THE MOST COMMON METHODS THAT RESEARCHERS USE TO "BENCHMARK" EXISTING KNOWLEDGE
 - BEFORE EMBARKING ON DEVELOPMENT PROJECTS.

THE RESULTS OF THIS SEARCH WILL THEN HELP TO DEFINE THE PROJECT'S TECHNOLOGICAL;

- OBJECTIVES &
- RELATED TECHNOLOGICAL UNCERTAINTIES.

Field of Science/Technology:

Mechanical engineering (2.03.01)

Project Details:

Intended Results: Work locations:	Develop new processes, Develop new materials, devices, or products, Improve existing processes, Improve existing materials, devices, or products Analysis, Commercial Facility
Key Employees:	Nick Tesla (Electrical technology - CET (2002) / Research Associate), Al Einstein (Physics - PhD. (1938) / Lead Researcher), Isaac Newton (Mechanical engineering - M.Asc. (1974) / Research Manager)
Evidence types:	Project planning documents; Progress reports, minutes of project meetings; Test protocols, test data, analysis of test results, conclusions; Records of resources allocated to the project, time sheets; Samples, prototypes, scrap or other artefacts; Design, system architecture and source code; Project records, laboratory notebooks; Photographs and videos; Design of experiments; Records of trial runs; Contracts

Scientific or Technological Advancement:

Uncertainty #1: Technological Uncertainty - e.g. Equipment variables THE CRA CLARIFIES THAT;

"SCIENTIFIC OR TECHNOLOGICAL UNCERTAINTY MAY OCCUR IN EITHER OF TWO WAYS:

[SCIENTIFIC UNCERTAINTY] IT MAY BE UNCERTAIN WHETHER THE GOALS CAN BE ACHIEVED AT ALL ; OR

[SYSTEM UNCERTAINTY] THE TAXPAYER MAY BE FAIRLY CONFIDENT THAT THE GOALS CAN BE ACHIEVED, BUT MAY BE UNCERTAIN WHICH OF SEVERAL ALTERNATIVES (I.E.,

- PATHS,
- ROUTES,
- APPROACHES,
- EQUIPMENT CONFIGURATIONS,
- SYSTEM ARCHITECTURES,
- CIRCUIT TECHNIQUES, ETC.)
- WILL EITHER WORK AT ALL, OR
- BE FEASIBLE TO MEET THE DESIRED SPECIFICATIONS OR COST TARGETS, OR
- BOTH OF THESE...

WORK ON COMBINING STANDARD TECHNOLOGIES, DEVICES, AND/OR PROCESSES IS ELIGIBLE IF

- NON-TRIVIAL COMBINATIONS OF ESTABLISHED (WELL-KNOWN) TECHNOLOGIES AND
- PRINCIPLES FOR THEIR INTEGRATION CARRY A MAJOR ELEMENT OF TECHNOLOGICAL UNCERTAINTY;
- THIS MAY BE CALLED A "SYSTEM UNCERTAINTY." IC-86R3 PARA. 2.10.2

IDENTIFYING KEY VARIABLES:

FROM A CLAIM PERSPECTIVE WE HAVE FOUND THAT THE MOST SUCCESSFUL CLAIMS ARE THOSE THAT OUTLINE SOME FORM OF "TEST MATRIX" TO LIST THE TOP 3-5, "KEY VARIABLES OF UNCERTAINTY."

EFFECTS ON PROJECT STRUCTURE:

ONCE THE DEVELOPMENT TEAM MEMBERS AGREE ON THE;

- OBJECTIVES (SQUARE) &

Project Name: PROJECT OUTLINE: INSTRUCTIONS FOR ENTERING DATA

Project Number: 100

- UNCERTAINTIES (TRIANGLES) EACH TEAM MEMBER CAN DOCUMENT HIS OR HER OWN

- ACTIVITIES (CIRCLES).

The most significant underlying key variables are:

VARIABLE #1 - e.g. component selection.

VARIABLE #2 - e.g. component lavout.

VARIABLE #3 - e.g. controlling interference

Activity #1-1: Changes to the Equipment (Fiscal Year 2008) Methods of experimentation:

- Analysis / simulation: 2 alternatives METHOD 1 "ANALYSIS OR SIMULATION" TEND TO BE THE "LEAST" TIME INTENSIVE "METHODS" OF EXPERIMENTATION.
 - FOR EXAMPLE EACH ALTERNATIVE MAY TAKE 1 MAN-HOUR TO SIMULATE OR ANALYZE. \sim
- Process trials: 9 runs / samples METHOD 2 ACTUAL "PROCESS TRIALS" TEND TO BE A "MODERATELY" TIME INTENSIVE "METHOD" OF EXPERIMENTATION.
 - FOR EXAMPLE EACH ALTERNATIVE MAY NOW TAKE 10 MAN-HOURS TO TEST ON THE FACTORY 0 FLOOR.
- Physical prototypes: 5 samples (with 3 revisions) METHOD 3 DEVELOPMENT OF "NEW PROTOTYPES" TENDS TO BE THE "MOST" TIME INTENSIVE "METHOD" OF EXPERIMENTATION.
 - FOR EXAMPLE EACH PROTOTYPE ALTERNATIVE MAY NOW TAKE 1,000 MAN-HOURS TO DESIGN, \circ FABRICATE, TEST AND REMODIFY UNTIL COMPLETE.

PROVIDING THE CRA WITH DETAILS ON

- THE NUMBER OF VARIATIONS CONTEMPLATED (5, 50, 500)
- IF DIFFERENT, HOW SO AND WHY?

WILL ALLOW THE CRA REVEIWERS TO

- VERIFY THAT THE ANSWER WAS NOT READILY APPARENT &
- JUDGE THE "GROSS REASONABLENESS" OF THE RELATED COSTS BEING CLAIMED.

Results:

- A QUANTIFIABLE OBJECTIVE: 1.5 # (50% of objective) -- USERS CAN TRY TO PROVIDE A BRIEF EXPLANATION ON THE "RESULTS" FOR "EACH OBJECTIVE."
 - GENERALLY SPEAKING IF THERE WERE QUANTIFIABLE RESULTS WE WOULD CLARIFY WHAT WAS ACHIEVED VS. THE OBJECTIVE.

IF THE TESTS WERE INCOMPLETE OR UNSUCCESSFUL WE COULD CLARIFY WHAT FURTHER WORK MAY BE CONTEMPLATED.

Conclusion:

"THE SEARCH FOR A MEANINGFUL ADVANCE ... IS SATISFIED WHETHER OR NOT THE CRA CLARIFIES THAT: THE ACTIVITY IS SUCCESSFUL. IN OTHER WORDS, DETERMINING THAT A HYPOTHESIS IS INCORRECT ALSO REPRESENTS A SCIENTIFIC OR TECHNOLOGICAL ADVANCE." [CRA IC 86-4R3 PARA 2.12]

AN IDEAL DESCRIPTION WOULD:

- PROVIDE CONCLUSIONS ON EACH OF THE STATED VARIABLES OF UNCERTAINTY &
- ATTEMPT TO EXPLAIN ANY UNEXPECTED RESULTS.

Most significant variables concluded on: VARIABLE #1 - e.g. component selection, VARIABLE #2 - e.g. component layout, VARIABLE #3 - e.g. controlling interference

Technical Documents:

- LIST &/OR UPLOAD ANY OF THE 12 EVIDENCE TYPES [LISTED IN "PROJECT DETAILS"]
- What is SR&ED brochure

SR&ED Stage 0.1 - MEUK Brochure - What is SR&ED (2 pages).pdf -- 280199 bytes

U	n	С	е	r	t	а	i	n	t	У	#	2	:	Р	r	ο	С	е	S	S
---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---

NOTE: THE TECHNOLOGICAL UNSERTAINTIES CAN BE IDENTIFIED AT THE

PROJECT OUTLINE: INSTRUCTIONS FOR ENTERING DATA

Project Number: 100

- PRODUCT &/OR - PROCESS LEVEL.

Project Name:

The most significant underlying key variables are:

VARIABLE #1, VARIABLE #2, VARIABLE #3

Activity #2-1: Influence of moulding process parameters (Fiscal Year 2008)

Methods of experimentation:

- Analysis / simulation: 2 alternatives
- Process trials: 3 runs / samples
- Physical prototypes: 4 samples (with 5 revisions)

Results:

• A QUANTIFIABLE OBJECTIVE: 1.9 # (90% of objective) -- ADDITIONAL COMMENTS REGARDING RESULTS

Conclusion:

Most significant variables concluded on: VARIABLE #1, VARIABLE #2, VARIABLE #3

Activity #2-2: Influence of moulding process parameters - continued (Fiscal Year 2009)

Methods of experimentation:

- Analysis / simulation: 3 alternatives
- Process trials: 5 runs / samples
- Physical prototypes: 4 samples (with 2 revisions)

[THE ACTIVITY CONTINUED INTO THE NEXT FISCAL YEAR. PLEASE CONTINUE WITH DESCRIBING THE WORK PERFORMED]

Results:

• A QUANTIFIABLE OBJECTIVE: 2.1 # (110% of objective) -- ADDITIONAL COMMENTS FOR RESULTS

Conclusion:

Most significant variables concluded on: VARIABLE #1, VARIABLE #2, VARIABLE #3

Key Criteria Summary

R&D Base demo

enchmarks:	Internet sear	ches: 1 sites / articles		Objectives:	A QUANTIF	IABLE OBJEC	TIVE: 2 #	
	Patent search	nes: 2 patents	-	OBJECTIVE	#2 (E.G. COS	T): 90 \$/UNIT		
		products or processes: 3 products						
		n-house technologies: 4 products /						
		ponents: 5 products perts: 6 responses						
	Queries to ex	pens. o responses						
Uncertainty:	1 - Technolog	gical Uncertainty - e.g. Equipment va	Key Variables:	#2 - e.g. cor	nponent layout	onent selection, V , VARIABLE #3 -		
					controlling ir			
Activity		Testing Methods	Results - % of Objective	Variables Concluded	Hours	Materials \$	Subcontractor \$	Fiscal Yea
1 - Changes to the	Equipment	Analysis / simulation: 2 alternatives	A QUANTIFIABLE OBJECTIVE: 1.5 # (50 %)	VARIABLE #1 - e.g.	250.00	3,195.00	1,540.00	2008
		Process trials: 9 runs / samples	OBJECTIVE: 1.5 # (50 %)	component selection				
				VARIABLE #2 - e a				
		Physical prototypes: 5 samples prototype revisions: 3 revisions		VARIABLE #2 - e.g. component layout				
Uncertainty:	2 - Process			0	VARIABLE #	#1, VARIABLE	#2, VARIABLE #	3
Uncertainty: Activity	2 - Process		Results - % of Objective	component layout	VARIABLE # Hours	#1, VARIABLE Materials \$	#2, VARIABLE # Subcontractor \$	3 Fiscal Yea
•		prototype revisions: 3 revisions	Results - % of Objective	component layout Key Variables:			,	
Activity		prototype revisions: 3 revisions Testing Methods		component layout Key Variables: Variables Concluded	Hours	Materials \$	Subcontractor \$	Fiscal Yea
Activity 1 - Influence of m		prototype revisions: 3 revisions Testing Methods Analysis / simulation: 2 alternatives	A QUANTIFIABLE	Component layout Key Variables: Variables Concluded VARIABLE #1	Hours	Materials \$	Subcontractor \$	Fiscal Yea
Activity 1 - Influence of m	oulding process	prototype revisions: 3 revisions Testing Methods Analysis / simulation: 2 alternatives Process trials: 3 runs / samples Physical prototypes: 4 samples	A QUANTIFIABLE	Component layout Key Variables: Variables Concluded VARIABLE #1 VARIABLE #2	Hours	Materials \$	Subcontractor \$	Fiscal Yea
Activity 1 - Influence of m parameters	oulding process	prototype revisions: 3 revisions Testing Methods Analysis / simulation: 2 alternatives Process trials: 3 runs / samples Physical prototypes: 4 samples prototype revisions: 5 revisions	A QUANTIFIABLE OBJECTIVE: 1.9 # (90 %)	Component layout Key Variables: Variables Concluded VARIABLE #1 VARIABLE #2 VARIABLE #3	Hours 130.00	Materials \$ 1,563.00	Subcontractor \$ 3,059.00	Fiscal Yea 2008

Benchmarks:	Internet searc	hes: 33 sites / articles		Objectives:	Temperature	e variance: 2 D	eg C	
	Patent search	ies: 2 patents				output/minute	0	
		ponents: 14 products			Shear: 12 to	ns/sq.inch		
	Queries to ex	perts: 2 responses			Improve Dis	persivity: 1 mn	า	
					Maximum co	ost increase: 1	5 %	
Uncertainty:	1 - Temperatu	ire Control		Key Variables:		ions, optimal m cations and in	neasurement dev tensity	ices,
Activity		Testing Methods	Results - % of Objective	Variables Concluded	Hours	Materials \$	Subcontractor \$	Fiscal Year
1 - Thermocouples	5	Analysis / simulation: 12 alternatives Process trials: 36 runs / samples	Temperature variance: 4 Deg C (33 %) Output: 100 output/minute (0 %) Shear: 50 tons/sq.inch (2000 %) Improve Dispersivity: 0.6 mm (20 %)	device locations optimal measurement devices	1,334.00	20,000.00	39,750.00	2008
2 - Fibre Optic sys	stem	Analysis / simulation: 6 alternatives Process trials: 90 runs / samples Physical prototypes: 1 samples prototype revisions: 2 revisions	Temperature variance: 1 Deg C (133 %) Output: 112 output/minute (60 %) Shear: 13 tons/sq.inch (150 %) Improve Dispersivity: 0.9 mm (80 %) Maximum cost increase: 20 % (133 %)	device locations optimal measurement devices	1,015.00	9,849.00	8,000.00	2008
3 - Fibre Optic Sys	stem	(none)	(none)	(none)	1,013.00	1,280.00	1,200.00	2009

2008-12-31

Complete a separate Part 2 for each project cla	imed this year.			
Section A – Project identification				
200 Project title (and identification code if application	ble)			
	t			
801 - improved compounding equipm	204 Completion or expected completion date	206 Field of science	e or technology code	
		(See guide for l		
2008-06 Year Month	2009-09 Year Month	2.03.01	Mechanical enginee	rina
Project history	rear wonth	2.03.01		ing
208 1 Continuation of a previously claimed p	roject 210 1 X First claim for the project			
218 Was any of the work done jointly or in collabo	ration with other businesses?		1 Yes	2 X No
If you answered yes to line 218, complete lines 20	0 and 221.			
220	Names of the businesses		221 BN	
1				
The work was carried out (check any that apply)				
222 1 By analysis only	226 1 X In a commercial plant or factor	cility		
223 1 In a laboratory	228 1 Others, specify 229			
224 1 In a dedicated research facility				
Purpose of the work				
To achieve technological advanceme		For the advancemer	nt of scientific knowledge	
230 1 X improving existing materials, devices, (Go to Section B – Experimental dev		Go to Section C –	Basic or applied research)
Section B – Experimental development				
The technological advancement you are trying to a	chieve with this work will result in:			

	Mat	terials, devices, or products		Processes	
The development of new	235	1	236	1	
The improvement of existing	237	1 🛛	238	1	

240 What technological advancements were you trying to achieve? (Maximum 35 lines) Scientific or Technological Objectives: The key Performance measures as follows: Objectives: Existing benchmark - Units of measure - Performance objective Temp variance: +/- 5 - Deg C - +/- 2 Output: 100 - output/minute - 120 Shear: 10 - tons /sq. inch - 12 Dispersivity: 1 - mm - 0.5
The key Performance measures as follows: Objectives: Existing benchmark - Units of measure - Performance objective - - - Performance Temp variance: +/- 5 - Deg C - +/- 2 Output: 100 - output/minute - 120 Shear: 10 - tons /sg. inch - 12
The key Performance measures as follows: Objectives: Existing benchmark - Units of measure - Performance objective - - - Performance Temp variance: +/- 5 - Deg C - +/- 2 Output: 100 - output/minute - 120 Shear: 10 - tons /sg. inch - 12
Objectives: Existing benchmark - Units of measure - Performance objective - Deg C - +/- 2 Temp variance: +/- 5 - Deg C - +/- 2 Output: 100 - output/minute - 120 Shear: 10 - tons /sq. inch - 12
objective Temp variance: +/- 5 - Deg C - +/- 2 Output: 100 - output/minute - 120 Shear: 10 - tons /sg. inch - 12
Temp variance: +/- 5 - Deg C - +/- 2 Output: 100 - output/minute - 120 Shear: 10 - tons /sq. inch - 12
Output: 100 - output/minute - 120 Shear: 10 - tons /sq. inch - 12
Shear: 10 - tons/sq. inch - 12
Shear: 10 - tons/sq. inch - 12
Dispersivity: 1 - mm - 0.5
Dispersivity: 1 - mm - 0.5
Most notably temperature control tolerance needed to be improved by over 100%
Technology or Knowledge Base Level:
Benchmarking methods & sources for citings:
Similar prior in-house technologies: 3 products / processes examined -
The product was an improvement to our proprietary "Gelimat" plastic molding
process and related machinery

CORPORATE TAXPREP / TAXPREP DES SOCIÉTÉS - EP10 VERSION 2008 V2.0 D-1.1

What technological advancements	s were you trying to achieve? (<i>Maximum 35 lines</i>)	
Internet / Google Searches: 33	33 sites & 18 articles reviewed - Identified	

issues on mix variation effects on temperature + limits of thermocouples
Patent searches: 2 patents examined - 2 method to use thermocouples for
control process - neither applicable our environment
Potential components: 14 products examined - 14 proecuts from 4 different
thermocouple suppliers and differences in performance
Queries to experts: 2 responses - Spoke with 2 machine designers to
identify alternate control methods. Identified limits with respect to control
strategies using themocouples and related alternatives.

What technological obstacles did you have to overcome to achieve those advancements? (Maximum 35 lines)

Uncertainty #1: Temperature control

oncertainty #1. remperature control
Although mechanical development such as changes in the angles of the rotating
blades and increased speed permitting timely fluxing of most plastics without
any external application of heat has been explored, uncertainty remained as to
practical ways to sense and control the temperature. A fraction of a second
too long near the fluxing point could lead to an increase of over 50 C, and
hence the potentially catastrophic degradation of plastics such as P.V.C.
The key variables in question were:

- Vibration

240

- Optimal measurement devices & locations

244 What work did you perform in the tax year to overcome those technological obstacles? (Summarize the systematic investigation) (Maximum 70 lines)

Activity #1-1: Thermocouples

Description of work performed in Fiscal Year 2008:

Experimentation method: Number of tests - Explanatory notes: justification of sample size

Analysis / simulation 12 alternatives - Examined 12 alternate configurations

of Thermocouples & vibration techniques

Process trials 36 runs - Performed 3 runs at differing pressures for each of the 12 alternate configurations

All trials were recorded in a test matrix.

Conclusions:

Attempts at control by techniques such as by vibration and by thermocouples proved inadequate.

The result of this work provided Conclusions with respect to variables of:

Vibration & Optimal measurement locations

Activity #1-2: Fibre Optic system

Description of work performed in Fiscal Year 2008:

Experimentation method: Number of tests - Explanatory notes: justification of sample size

Analysis/simulation 1 alternative - Identified a potential system using fibre optics

Process trials 5 runs/samples - Performed 5 runs at differing pressures

 Perform meas.:Exist
 benchmark
 -Units meas.
 -Perform
 object.
 -Result
 Vs.
 Expect

 Temp variance
 +/- 5
 - Deg C
 +/- 2
 +/- 2
 Met

 Output
 100
 output/minute
 120
 112
 60% met

CORPORATE TAXPREP / TAXPREP DES SOCIÉTÉS - EP10 VERSION 2008 V2.0

Dispersivity	1	– mm	- 0.5	- 0.6 - 80% met	
Shear	10	- tons /so	[. inch - 12	- 13 - > 10%	
Conclusions:					
This new mixing	technolo	ogy proved su	ccessful for the	compounding of P.V.C. and	
other shear-sens	itive ar	nd/or tempera	ture-sensitive pla	astics if deployed	
properly [IDEALL	Y WE WOU	JLD QUANTIFY	THIS FURTHER] wi	thin the system.	
Section C – Basic	or applie	d research			

250 Describe the scientific knowledge that you were trying to advance. (Maximum 35 lines)

252 Summarize the work performed in the tax year, and explain how that work contributed to the advancement of scientific knowledge. (Summarize the systematic investigation) (Maximum 70 lines)

Section D - Additional project information Who prepared the responses for Section B or Section C? 254 Name 253 Employee directly involved in Х the project **Issac Newton** 255 256 Name Other employee of the company 258 Name 259 Firm 257 1 External consultant List three key employees directly involved in the project and indicate their qualifications. 260 261 Names Qualifications/experience and position title PhD/ Physics Al Einstein 1 2 Issac Newton M.Asc/Mechanical Engineering Nick Tesla **CET/Electrical Technology** 3 2 X No 265 Are you claiming any salary or wages for SR&ED performed outside Canada? 1 Yes 2 X No Are you claiming expenditures for SR&ED carried out on behalf of another party? Yes 266 1 X Yes 2 267 Are you claiming expenditures for SR&ED performed by people other than your employees? No

lf you	If you answered yes to line 267, complete lines 268 and 269.							
268	Names of individuals or companies	269	Social Insurance Number or Business Number					
1	ABC Motor Engineers							
2	MEUK Testing Labs							
3	-							

	Vhat evidence do you have to support your claim? (Check any that apply) 'ou do not need to submit the evidence with the claim. However, you are required to retain them in the event of a review.								
270 1	Project planning documents	276 1	Progress reports, minutes of project meetings						
271 1 🕽	Records of resources allocated to the project, time sheets	277 1 2	Test protocols, test data, analysis of test results, conclusions						
272 1	Design of experiments	278 1	Photographs and videos						
273 1	Project records, laboratory notebooks	279 1	Samples, prototypes, scrap or other artefacts						
274 1	Design, system architecture and source code	280 1	Contracts						
275 1	Records of trial runs	281 1	Others, specify 282						

Section E – Project cost

-	
Project expenditures claimed in the year:	
285 Salary or wages	104,583 \$
286 Materials consumed and transformed	20,000 \$
287 SR&ED contracts	45,000 \$
289 Overhead and other expenses (if you use the traditional method in Part 3)	\$

Software – Database methodology development:

Benchmarks:	Internet sear	ches: 21 sites / articles		Objectives:	Access spee	ed with large da	atabase: 15 s	
	Patent searc	hes: 14 patents		-				
	Similar prior	in-house technologies: 1 products /						
Uncertainty:	1 - Relationa	I Data Model Analysis - [Supporting A	Act.]	Key Variables:	performance	9		
Activity		Testing Methods	Results - % of Objective	Variables Concluded	Hours	Materials \$	Subcontractor \$	Fiscal Yea
1 - Literature Revie	W	Analysis / simulation: 4 alternatives	(none)	performance	502.00	123.00	12.00	2008
•	2 - Comm mo	odel vs. Relational Environment	Results - % of Objective	Key Variables:	performance		Subcontractor \$	Fiscal Vea
Uncertainty:	2 - Comm mo		Results - % of Objective		•		Subcontractor \$	Fiscal Yea
Activity 1 - Data Communic		odel vs. Relational Environment Testing Methods Process trials: 1 runs / samples	Results - % of Objective	Key Variables: Variables Concluded performance	Performance Hours 12.00	Materials \$	Subcontractor \$ 17.00	Fiscal Yea 2008
Activity		Testing Methods		Variables Concluded	Hours	Materials \$		
Activity 1 - Data Communic Analysis	cations Model	Testing Methods Process trials: 1 runs / samples	(none)	Variables Concluded performance	Hours	Materials \$		
Activity 1 - Data Communic Analysis	cations Model	Testing Methods	(none)	Variables Concluded	Hours	Materials \$		
Activity 1 - Data Communic Analysis Uncertainty:	cations Model	Testing Methods Process trials: 1 runs / samples	(none)	Variables Concluded performance	Hours	Materials \$		
Activity 1 - Data Communic	ations Model 3 - Relationa	Testing Methods Process trials: 1 runs / samples I Access + Packet Access Combinati	(none)	Variables Concluded performance Key Variables:	Hours 12.00	Materials \$ 12.00	17.00	2008

Part 2 - Project information (continued) Complete a separate Part 2 for each project claimed this year. Section A – Project identification 200 Project title (and identification code if applicable) 802 - New database method 204 Completion or expected completion date 206 Field of science or technology code 202 Project start date (See guide for list of codes) 2008-02 2008-09 1.02.03 Software (hardware developmen Year Month Year Month Project history 1 X First claim for the project **208** 1 Continuation of a previously claimed project 210 218 Was any of the work done jointly or in collaboration with other businesses? 2 X No Yes 1 If you answered yes to line 218, complete lines 200 and 221. 220 221 Names of the businesses ΒN 1 The work was carried out (check any that apply) By analysis only 1 X In a commercial plant or facility 222 1 226 In a laboratory Others, specify 229 223 228 224 In a dedicated research facility 1 Purpose of the work To achieve technological advancement for the purpose of creating new or For the advancement of scientific knowledge 1 X improving existing materials, devices, products or processes. 230

(Go to Section B-Experimental development)

232 1

(Go to Section C - Basic or applied research)

S	Section B – Experimental development						
The technological advancement you are trying to achieve with this work will result in:							
		Μ	laterials, devices, or products		Processes		
	The development of new	235	1	236	1		
	The improvement of existing	237	1	238	1 🗙		

240 What technological advancements were you trying to achieve? (Maximum 35 lines)
Scientific or Technological Objectives:
[AUTHOR'S NOTE: THIS PROJECT DESCRIPTION IS BASED ON THE CRA'S EXAMPLE OF AN
ELIGIBLE PROJECT FROM THEIR SR&ED SOFTWARE DEVELOPMENT INDUSTRY GUIDELINES:
INFORMATION CIRCULAR 97-1.]
To develop and implement a new data basing method in order to double the speed
of the database currently achieved in Version 3.5 of our "property record
management system."
Technology or Knowledge Base Level:
XYZ Co. has developed a proprietary DMS (database management system) as part
of their PRMS (property record management system) product. The DMS works well
with small data sets, but has excessive access times (>30 seconds) with large
databases (>1 gigabyte).
[AUTHOR'S NOTE: THIS EXPLANATION OF STANDARD PRACTICE SHOULD ATTEMPT TO
OUTLINE "READILY AVAILABLE INFORMATION" ON THE TOPIC CONSIDERED AND IDENTIFY
THE BOUNDARIES OF "KNOWN" AND "UNKNOWN" VARIABLES. THESE IN TURN FORM THE
BASIS OF THE "TECHNOLOGICAL UNCERTAINTIES". THIS INFORMATION IS USEFUL IN
HELPING THE AUDITOR TO EVALUATE THE COMPANY'S "TECHNICAL OUALIFICATIONS" WITH

Project Number:

Agriculture - Plant breeding

ee righealtare	 Plant breed 	ling							
enchmarks:		rches: 18 sites / articles		Objectives:	Yield improvement: 100 % Lodging resistance improvement: 10 % Maintain disease resistance: 100 %				
		ches: 2 patents							
		products or processes: 14 products							
	Similar prior	in-house technologies: 23 products				t: 4.5 \$ per Kild			
					maintain tim	e of maturity :	45 days		
Uncertainty:	1 - Trait isol	ation combination		Key Variables:		xx), genotypes transfer genes	(yy), genotypes ((zz), optimal	
Activity		Testing Methods	Results - % of Objective	Variables Concluded	Hours	Materials \$	Subcontractor \$	Fiscal Year	
1 - Experimental cr	osses	Process trials: 9770 runs / samples prototype revisions: 5 revisions	Yield improvement: 95 % (50 %) Lodging resistance improvement: 8 % (80 %) Reduce cost: 4.9 \$ per Kilo (20 %) maintain time of maturity : 45 days (100 %)	genotypes (xx) genotypes (yy) genotypes (zz) optimal methods to transfer genes	615.00	6,075.00	1,405.45	2008	
	2 Maintain	disease resistance		Key Variables:	disease resi	stance, yield			
Uncertainty:	z - Mamam			ney variables.					

 Uncertainty:
 2 - Maintain disease resistance
 Key Variables:
 disease resistance, yield

 Activity
 Testing Methods
 Results - % of Objective
 Variables Concluded
 Hours
 Materials \$
 Subcontractor \$
 Fiscal Year

 1 - Disease testing
 Process trials: 40 runs / samples
 Lodging resistance
 disease resistance
 580.00
 2,295.00
 1,200.00
 2009

 Maintain disease resistance:
 98 % (100 %)
 Maintain disease resistance:
 98 % (100 %)
 Fiscal Year

240 What technological advancements were you trying to achieve? (Maximum 35 lines)

RESPECT TO THE TECHNOLOGIES IN QUESTION.]

242 What technological obstacles did you have to overcome to achieve those advancements? (Maximum 35 lines)

Uncertainty #1: Relational Data Model Analysis - [Supporting Activity]

What kind of negative effects might result from using a relational data model

with the DMS?

Uncertainty #2: Relational Environment Issues

How will using a data model designed for data communications in a relational

environment affect performance?

Uncertainty #3: Relational Access + Packet Access Combination

How can we optimally combine relational and packet access against the same database to yield a minimum # of inefficiencies when processing tables in the

DMS?

244 What work did you perform in the tax year to overcome those technological obstacles? (Summarize the systematic investigation) (Maximum 70 lines)

Activity #1-1 in Fiscal Year ending 2007-12-31: Literature Review
Description of work performed:
Conducted a literature review of relational data models. As a result we looked
at 4 alternate data models.
Conclusions:
Discovered that relational data models could be inefficient when used in the
DMS in some circumstances.
Activity #2-1 in Fiscal Year ending 2007-12-31: Data Communications Model
Analysis
Description of work performed:
We experimented to determine if an existing data communications model could be
adapted to achieve processing efficiencies, at the expense of additional
storage space.
Conclusions:
Determined that a data communications model could achieve processing
efficiencies.
This conclusion however uncovered a new uncertainty with respect to the
optimal method to combine relational and packet access methods.
Activity #3-1 in Fiscal Year ending 2007-12-31: Model Comparison Tests
Description of work performed:
Conducted 7 comprehensive benchmark tests to compare performance between the
two models.
Conclusions:
While some of the tables could be processed more efficiently if they were in
packet form, others were best managed through relational techniques.
Activity #3-2 in Fiscal Year ending 2007-12-31: Hybrid Model Attempt
Description of work performed:
Experimentally employed a hybrid approach involving both relational and packet
data management techniques in upgrading from PRMS 3.5 to 4.0. Created a
prototype Data Model DMS with the intention of making it faster than the
existing one.
Initial testing indicated that the new DMS was 75% faster than the existing
DMS through use of the newly developed hybrid data access techniques.

Section C – Basic or applied research					
250 Describe the scientific knowledge that you were trying to advance. (Maximum 35 lines)					

2008-12-31

252 Summarize the work performed in the tax year, and explain how that work contributed to the advancement of scientific knowledge. (Summarize the systematic investigation) (*Maximum 70 lines*)

Section D – Additional project informati	on			
Who prepared the responses for Section B or Sect	ion C?			
253 1 X Employee directly involved in the project	254 Name Nick Teslas			
255 1 Other employee of the company	256 Name			
257 1 External consultant	258 Name	259	Firm	
List three key employees directly involved in the pro-	pject and indicate their qualificat	ions.		
260 Names		261 Qualifications	e/experience and position title	
1 Nick Tesla		CET/Electrical technology		
2				
3				
265 Are you claiming any salary or wages for SR8			1 🔄 Yes	2 X No
266 Are you claiming expenditures for SR&ED ca	rried out on behalf of another pa	arty?	1 🔄 Yes	2 X No
267 Are you claiming expenditures for SR&ED per	rformed by people other than yo	ur employees?	1 Yes	2 X No

If you answered yes to	line 267, complete lines 268 and 269.		
268	Names of individuals or companies	269	Social Insurance Number or Business Number
1			

What evidence do you have to support your claim? (Check any that apply) You do not need to submit the evidence with the claim. However, you are required to retain them in the event of a review.

270 1 X Project planning documents	276 1 X Progress reports, minutes of project meetings
271 1 Records of resources allocated to the project, time sheets	277 1 Test protocols, test data, analysis of test results, conclusions
272 1 Design of experiments	278 1 Photographs and videos
273 1 X Project records, laboratory notebooks	279 1 Samples, prototypes, scrap or other artefacts
274 1 Design, system architecture and source code	280 1 Contracts
275 1 Records of trial runs	281 1 Others, specify 282

Section E – Project cost

Project expenditures claimed in the year:	
285 Salary or wages	100,000 \$
286 Materials consumed and transformed	5,000 \$
287 SR&ED contracts	\$
289 Overhead and other expenses (if you use the traditional method in Part 3)	\$

(c) MEUK Corporation 2011

Chemicals - Optimize DA Catalyst Recipe:

enchmarks:	icals - Optimize DA Catalyst Recipe Internet searches: 33 sites / articles Competitive products or processes: 7 products		Objectives:	Reduce Bull Powder Mor	phology: 4900	ation: 0.02 g/cm^3	3
Uncertainty:	1 - Modeling of catalyst fabrication conditions		Key Variables:		, catalyst effici	ency, metal ratio, ation	powder
Activity	Testing Methods	Results - % of Objective	Variables Concluded	Hours	Materials \$	Subcontractor \$	Fiscal Year
1 - Catalyst test tria	Analysis / simulation: 10 alternatives Process trials: 10 runs / samples	Catalyst Efficiency: 140 kgPE/gTi.h (62 %) Reduce Bulk Density Variation: 0.45 g/cm^3 (-1333 %) Powder Morphology: 4900 cm^2/g (100 %) Minimize cost of production: 3.72 \$ per liter (77 %)	bulk density catalyst efficiency metal ratio powder morphology zinc concentration	1,030.18	420.00	750.00	2008

Part 2 - Project information (continued)

Complete a separate Part 2 for each project claimed this year.

Please see D-3.1 - D-3.3 for full Project Description

Section A – Project identification			
200 Project title (and identification code if applicable)			
803 - Chemical - catalyst process improv	ement		
202 Project start date 20	4 Completion or expected completion date	206 Field of science or	
2008-08	2008-12	(See guide for list o	of codes)
Year Month	Year Month	1.04.06 A	Analytical chemistry
Project history			
208 1 Continuation of a previously claimed project	210 1 X First claim for the project		
218 Was any of the work done jointly or in collaboratio	n with other businesses?		1 Yes 2 X No
If you answered yes to line 218, complete lines 200 and	d 221.		
220 Na	mes of the businesses		221 BN
1			
The work was carried out (check any that apply)			
222 1 By analysis only	226 1 X In a commercial plant or fa	cility	
223 1 In a laboratory	228 1 Others, specify 229		
224 1 In a dedicated research facility			
Purpose of the work			
230 1 X improving existing materials, devices, proc (Go to Section B – Experimental developed)	lucts or processes. 232 1	For the advancement of (Go to Section C – Bas	

2008-12-31

Section B – Experimental development

The technological advancement you are trying to achieve v	vith this work will resu	ult in:			
	Mat	terials, devices, or products		Processes	
The development of new	235	1	236	1	
The improvement of existing	237	1	238	1 🗙	

240 What technological advancements were you trying to achieve? (Maximum 35 lines)
Scientific or Technological Objectives:
[AUTHOR'S NOTE: THIS SR&ED PROJECT IS BASED ON AN EXAMPLE DEVELOPED BY A
CHEMICALS INDUSTRY CANADA REVENUE AGENCY (CRA) JOINT COMMITTEE ENTITLED,
"CHEMICALS GUIDANCE DOCUMENT # 1 - SHOP FLOOR SR&ED" - THIS DOCUMENT IS
AVAILABLE FROM THE SECTOR-SPECIFIC GUIDES ON THE CRA WEBSITE AT
http://www.cra-arc.gc.ca/taxcredit/sred/sector-e.html]
The primary technological objective of this project is to minimize catalyst
batch-to-batch variability in order to increase the consistency of our resin.
This will be achieved through the development of a correlation between
catalyst fabrication conditions and the HDPE powder properties. For each batch
the plant catalyst is tested on the lab-scale reactor. The powder properties
(e.g. catalyst efficiency, bulk density, and powder morphology) will be
correlated to the catalyst fabrication conditions. The information will be
used to:
(a) eliminate Lab Scale Reactor testing of catalyst batches by R&D personnel;
(b) determine whether a batch is "in control" with respect to parameters of
interest; if out of control, the batch will be scrapped;
(c) predict the effect of catalyst batch on reactor operation and
powder-drying system;
(d) develop specific plans for improvements to catalyst fabrication hardware.

240 What technological advancements were you trying to achieve? (Maximum 35 lines)
A secondary objective was to successfully deploy a fibre optics probe and
commission a new lab-scale reactor. The experimental work will require the
application of these sophisticated tools to develop an empirical correlation
between plant catalyst preparation conditions and polymer properties. This is
the first such study of its kind in the shop-floor environment.
Technology or Knowledge Base Level:
The company currently experiences catalyst batch-to-batch variability in the
consistency of our resin due to unknown variables between catalyst fabrication
conditions and HDPE powder properties.
What technological obstacles did you have to overcome to achieve those advancements? (<i>Maximum 35 lines</i>) Uncertainty #1: Modelling of catalyst fabrication conditions
From a technological point of view, it was not clear which catalyst fabrication conditions
- (such as metal ratio,
- zinc concentration,
- OH/Cl ratio)
would have an impact on the powder properties of interest
- (i.e. Catalyst efficiency,
- bulk density, and
- powder morphology)
or if there would be any statistically significant correlation of value for an
empirically-based mathematical model.
NOTE OPTIMALLY THE DECONTRACTOR CUCHTO ANALY THE DANGE TECTED FOR YEV

[NOTE: OPTIMALLY THIS DESCRIPTION SHOULD QUANTIFY THE RANGES TESTED FOR KEY VARIABLES EITHER HERE IN THE UNCERTAINTY, OR IN THE CATALYST TEST TRIALS

ACTIVITY]

244 What work did you perform in the tax year to overcome those technological obstacles? (Summarize the systematic investigation) (Maximum 70 lines)
Activity #1-1 in Fiscal Year ending 2007-12-31: Catalyst test trials
Description of work performed:
1. Plant catalyst tested on the new lab scale reactor
2. Powder properties (12, 110 and bulk density) were control charted using a
computer program
3. Catalyst preparation conditions (i.e. metal ratio, Zn concentration, OH/Cl
ratio) were also control charted
4. A preliminary correlation was developed
5. Improvements were made to the sampling system
6. Manufacturing installed a new meter to control the alkyl halide addition
7. Lab scale reactor bulk density and powder morphology information was used
to predict drying problems in the unit
[NOTE: THIS DESCRIPTION SHOULD LIST:
- THE NUMBER OF TESTS PERFORMED AND - THE RANGES OF VARIABLES TESTED.
- ALSO THE CORRELATION DERIVED SHOULD BE BRIEFLY DISCUSSED, AND
- THE IMPROVEMENTS MADE AND REASONS FOR THESE IMPROVEMENTS.]
Conclusions:
Results from this project have provided us with a better understanding of
which catalyst fabrication conditions (such as metal ratio, zinc
concentration, OH/Cl ratio) would have an impact on the powder properties of
interest (i.e. Catalyst efficiency, bulk density, and powder morphology).
The information garnered from the various control charts was successfully used
to plan the following years R&D and Manufacturing activities, e.g. new meters
for catalyst raw material metering, increase frequency of side stream
analysis, refinements to catalyst database, etc.
In addition, the preliminary database was used to successfully predict V100
efficiency and powder morphology, which is a significant technology advance
within the company. We also learned that coarse lab scale reactor powders

CORPORATE TAXPREP / TAXPREP DES SOCIÉTÉS - EP10 VERSION 2008 V2.0

244 What work did you perform in the tax year to overcome those technological obstacles? (Summarize the systematic investigation) (Maximum 70 lines)
often resulted in drying problems within the plant, based on the study which
showed correlations between various powder parameters and drying properties.
[NOTE: THE CONCLUSION COULD QUANTIFY THE FINAL RESULTS, OR STATE WHICH
VARIABLES WERE FOUND TO BE SIGNIFICANT / INSIGNIFICANT. THE CONCLUSION COULD
ALSO ELABORATE FURTHER ON THE CURRENT STATUS OF THE PROJECT, AND IF THERE ARE
PLANS FOR ANY FUTURE WORK.]
Activity #1-2 in Fiscal Year ending 2007-12-31: Other "post SR&ED" Activities:
Description of work performed:
1. Safety training conducted on new systems
2. Safe operating procedures documentation written
[NOTE: THESE ACTIVITIES ARE INELIGIBLE FOR SR&ED CREDITS PURPOSES SINCE THEIR
PERFORMANCE DOES NOT DIRECTLY ADDRESS ANY OF THE STATED "TECHNOLOGICAL
UNCERTAINTIES."]
Conclusions:
RECOMMENDATIONS ON SUPPORTING TECHNICAL DOCUMENTATION
EXAMPLES OF SUPPORTING INFORMATION THAT COULD BE AVAILABLE FOR ON SITE
EXAMINATION BY CANADA CUSTOMS AND REVENUE AGENCY INCLUDE:
O BACKGROUND LITERATURE RELATED TO A PROJECT PLAN O RECORDS OF
EXPERIMENTAL RUNS, TEST DATA AND RESULTS O PROJECT NOTE BOOKS AND/OR
QUANTITATIVE MEASUREMENT DATA O LAB BOOKS OR RECORDS O INTERNAL DESIGN
DOCUMENTS AND DRAWINGS O ANY OTHER RELEVANT DOCUMENTATION (E.G., PHOTOS)
THAT SUBSTANTIATES SR&ED WORK O PROTOTYPES OR MOCK-UPS O PILOT-SCALE
OR BENCH-SCALE EQUIPMENT USED FOR EXPERIMENTATION. O ANNOTATED SPC CHARTS
O ANNOTATED PROCESS LOGS O USED PARTS OF EQUIPMENT O SAMPLES OF
MATERIAL O SHIPPING DOCUMENTATION FOR EXPERIMENTAL PRODUCTS O EVIDENCE
FROM CUSTOMER/END USER TRIALS
THE CRA WILL CONSIDER OTHER SUPPORTING EVIDENCE, AS NECESSARY AND APPROPRIATE,
IN EVALUATING SR&ED CLAIMS.
[AUTHOR'S NOTE: FOR ADDITIONAL EXAMPLES SPECIFIC TO THE "PLASTICS" AND
"CHEMICAL" INDUSTRIES, VISIT, www.rdbase.net]

Section C – Basic or applied research

250 Describe the scientific knowledge that you were trying to advance. (Maximum 35 lines)

252 Summarize the work performed in the tax year, and explain how that work contributed to the advancement of scientific knowledge. (Summarize the systematic investigation) (*Maximum 70 lines*)

1 Employee directly involved in the project 254 Name Al Nobel 253 1 Other employee of the company 255 257 1 External consultant 253 258 1 External consultant 253 259 Name 253 250 Names 261 250 Names 261 250 Names 263 250 Names 263 250 Names 261 251 Qualifications/experience and position title Al Nobel P. Eng/Chemical Engineering 2 Lou Pasteur BSc./Chemistry 3 Nick Tesla Electrical Technology 253 Are you claiming expenditures for SR&ED performed outside Canada? 1 Yes 2 No 254 Are you claiming expenditures for SR&ED performed by people other than your employees? 1 Yes 2 No 254 Are you claiming expenditures for SR&ED performed by people other than your employees? 1 Yes 2 No 254 Names of individuals or companies 253	Section D – Additional project information	
Al Nobel 31 Other employee of the company 253 Name 257 1 External consultant 258 Names 259 Names 250 Names 251 Qualifications/experience and position title 1 At Nobel 2 Names 250 Names 251 Qualifications/experience and position title 1 At Nobel 2 Lou Pasteur 3 Nick Tesla 2 Lou Pasteur 3 Nick Tesla 2 Are you claiming expenditures for SR&ED performed outside Canada? 4 Yes 2 Xer you claiming expenditures for SR&ED performed by people other than your employees? 2 Xer you claiming expenditures for SR&ED performed by people other than your employees? 3 Names of individuals or companies 2 Social Insurance Number or Business Number 4 Manes of individuals or companies 2 1 Test protocols, lest data, analysis of test results, company for polytor claim? (Check any that apply)	Who prepared the responses for Section B or Section C?	
1 Other employee of the company 257 1 External consultant 253 Name 253 Firm 250 Names 261 Qualifications/experience and position title 260 Names 261 Qualifications/experience and position title 261 Qualifications/experience and position title 263 262 Names 261 Qualifications/experience and position title 263 Names 261 Qualifications/experience and position title 264 P.Eng/Chemical Engineering 2 X No 265 Are you claiming any salary or wages for SR&ED performed outside Canada? 1 Y Yes 2 X No 265 Are you claiming expenditures for SR&ED performed by people other than your employees? 1 Y Yes 2 X No 274 Are you claiming expenditures for SR&ED performed by people other than your employees? 1 Y Yes 2 X No 263 Names of individuals or companies 269 Social Insurance Number or Business Number 270 1 Y Project planning documents 273 1 Y Progress reports, minutes of project meetings <t< th=""><th></th><th></th></t<>		
1 Externationsultant 1.stthree key employees directly involved in the project and indicate their qualifications. 250 Names 261 Qualifications/experience and position title 1 Al Nobel 2 Lou Pasteur 3 Definition of the project and indicate their qualifications. 263 Names 2 Lou Pasteur 3 Nick Tesla 2 Electrical Technology 263 Are you claiming expenditures for SR&ED performed outside Canada? 2 X 264 Pyou claiming expenditures for SR&ED performed by people other than your employees? 27 1 Yes 2 X No 265 Names of individuals or companies 265 Social Insurance Number or Business Number 1 Ves 2 X No 270 1 X Project planning documents 276 1 Yergers reports, minutes of project meetings 271 1 Design of experiments 277 1 Conclusions 279 1 Xergers reports, minutes of project meetings 279 1 <th>255 1 Other employee of the company 256</th> <th>Vame</th>	255 1 Other employee of the company 256	Vame
260 Names 261 Qualifications/experience and position title 1 Al Nobel P. Eng/Chemical Engineering 2 Lou Pasteur BSc. /Chemistry 3 Nick Tesla Electrical Technology 255 Are you claiming any salary or wages for SR&ED performed outside Canada? 1 Yes 2 No 266 Are you claiming expenditures for SR&ED performed by people other than your employees? 1 Yes 2 No 267 Are you claiming expenditures for SR&ED performed by people other than your employees? 1 Yes 2 No 268 Are you claiming expenditures for SR&ED performed by people other than your employees? 1 Yes 2 No 269 No answered yes to line 267, complete lines 268 and 269. 269 Social Insurance Number or Business Number 2608 Names of individuals or companies 269 Social Insurance Number or Business Number 270 1 X Project planning documents 270 1 Yes protocols, test data, analysis of test results, conclusions 271 1 Records of resources allocated to the project, toendet as ource code 270 1 Project records, laboratory n	257 1 External consultant 258	Vame 259 Firm
Al Nobel P.Eng/Chemical Engineering Lou Pasteur BSc./Chemistry Nick Tesla Electrical Technology 455 Are you claiming any salary or wages for SR&ED performed outside Canada? 1 Yes 2 X No 465 Are you claiming expenditures for SR&ED carried out on behalf of another party? 1 Yes 2 X No 465 Are you claiming expenditures for SR&ED performed by people other than your employees? 1 Yes 2 X No 466 Names of individuals or companies 265 Social Insurance Number or Business Number 470 Names of individuals or companies 265 Social Insurance Number or Business Number 471 What evidence do you have to support your claim? (Check any that apply) Cou do not need to submit the evidence with the claim. However, you are required to retain them in the event of a review. 472 1 Records of resources allocated to the project, conclusions 277 1 Test protocols, heits data, analysis of test results, conclusions 472 1 Design of experiments 278 1 Photographs and videos 473 1 Project records, laboratory notebooks 279 1 Samples,	List three key employees directly involved in the project and in	dicate their qualifications.
2 Lou Pasteur BSc./Chemistry 3 Nick Tesla Electrical Technology 265 Are you claiming any salary or wages for SR&ED performed outside Canada? 1 Yes 266 Are you claiming expenditures for SR&ED performed outside Canada? 1 Yes 276 Are you claiming expenditures for SR&ED performed by people other than your employees? 1 Yes 276 Are you claiming expenditures for SR&ED performed by people other than your employees? 1 Yes 276 Names of individuals or companies 269 Social Insurance Number or Business Number What evidence do you have to support your claim? (Check any that apply) You donot need to submit the evidence with the claim. However, you are required to retain them in the event of a review. You donot need to support your claim? (Check any that apply) You donot need to support your claim? (Check any that apply) You donot need to support your claim? (Check any that apply) You donot need to support your claim? (Check any that apply) You donot need to support your claim? (Check any that apply) You donot need to support your claim? (Check any that apply) You donot need to support your claim? (Check any that apply) You donot need to support your claim? (Check any that apply) You donot need to support your claim? (Check any that apply) You donot need to support your claim? (Check any that apply) You donot need to support your claim? (Check any that apply) You donot need to support your claim? (Check any that apply) You donot need to support your claim? (Check any that apply) You donot need to support your claim? (Check any that apply) You donot need to support your claim? (Check any that apply)	260 Names	261 Qualifications/experience and position title
Nick Tesla Electrical Technology 3 Nick Tesla 2 X ho 3 Are you claiming any salary or wages for SR&ED performed outside Canada? 4 1 4 Yes 2 X ho 263 Are you claiming expenditures for SR&ED performed by people other than your employees? 1 Yes 2 X ho 263 Names of individuals or companies 263 Social Insurance Number or Business Number What evidence do you have to support your claim? (Check any that apply) You donot need to subport your claim? (Check any that apply) You donot need to subport your claim? (Check any that apply) You donot need to subport your claim? (Check any that apply) You donot need to subport your claim? (Check any that apply) You donot need to subport your claim? (Check any that apply) You donot need to subport your claim? (Check any that apply) You donot need to subport your claim? (Check any that apply) You donot need to subport your claim? (Check any that apply) You donot need to subport your claim? (Check any that apply) You donot need to subport your claim? (Check any that apply) You donot need to subport your claim? (Check any that apply) You donot need to subport your claim? (Check any that apply) You donot need to subport your claim? (Check any that apply) You donot need to subport your claim? (Check any that apply) You donot need to subport your claim? (Check any that apply) You donot need to subport your claim? (Check any t	1 Al Nobel	P.Eng/Chemical Engineering
255 Are you claiming any salary or wages for SR&ED performed outside Canada? 1 Yes 2 X No 266 Are you claiming expenditures for SR&ED performed by people other than your employees? 1 Yes 2 X No 267 Are you claiming expenditures for SR&ED performed by people other than your employees? 1 Yes 2 X No 278 Names of individuals or companies 269 Social Insurance Number or Business Number What evidence do you have to support your claim? (Check any that apply) fou do not need to submit the evidence with the claim. However, you are required to retain them in the event of a review. 201 1 X Project planning documents 276 1 277 1 Test protocols, test data, analysis of test results, conclusions 273 1 Design of experiments 273 1 Project records, laboratory notebooks 273 1 Project records, laboratory notebooks 273 1 Design, system architecture and source code 280 281 1 Others, specify 282 282 Section E – Project cost Project cost Project expenditures claimed in the year: 283 283 284 by or wages 200,000 S 293	2 Lou Pasteur	BSc./Chemistry
335 Are you claiming expenditures for SR&ED carried out on behalf of another party? 1 Yes 2 X No 347 Are you claiming expenditures for SR&ED performed by people other than your employees? 1 Yes 2 X No 348 Names of individuals or companies 269 Social Insurance Number or Business Number 348 Names of individuals or companies 269 Social Insurance Number or Business Number 349 Vhat evidence do you have to support your claim? (Check any that apply) fou do not need to submit the evidence with the claim. However, you are required to retain them in the event of a review. 340 1 X Progress reports, minutes of project meetings 341 1 Check any that appl? 342 1 2 X 343 1 Yes 2 344 2 X 345 X X 345 X X 346 X X 347 1 X 348 Yeiget planning documents 276 349 Y Yeiget planning documents 341 1 Test protocols, test data, analysis of test results, conclusions 341 1 Design of experiments 343 1 Project records, laboratory notebooks 343 1 Project planning documents 344 1 Design, system architecture and source code 345 1 Contracts 345 1 Others, specify 345 <td>3 Nick Tesla</td> <td>Electrical Technology</td>	3 Nick Tesla	Electrical Technology
What evidence do you have to support your claim? (Check any that apply) You do not need to submit the evidence with the claim. However, you are required to retain them in the event of a review. 270 1 X Project planning documents 276 1 X Project planning documents 277 1 Design of experiments 278 278 1 Project records, laboratory notebooks 279 1 Samples, prototypes, scrap or other artefacts 274 1 Design, system architecture and source code 280 1 Contracts 275 1 Records of trial runs 281 Project cost Project expenditures claimed in the year: 285 Salary or wages	If you answered yes to line 267, complete lines 268 and 269.	269 Social Insurance Number or Rusiness Number
You do not need to submit the evidence with the claim. However, you are required to retain them in the event of a review. 270 1 270 1 270 1 270 1 271 1 272 1 273 1 273 1 274 1 275 1 276 1 277 1 277 1 278 1 279 1 278 1 279 1 279 1 279 1 279 1 279 1 279 1 279 1 270 1 273 1 274 1 275 1 276 1 277 1 278 1 279 1 280 1 277 1 281 1 279 282	1	
271 1 Records of resources allocated to the project, time sheets 277 1 Test protocols, test data, analysis of test results, conclusions 272 1 Design of experiments 278 1 Photographs and videos 273 1 Project records, laboratory notebooks 279 1 Samples, prototypes, scrap or other artefacts 274 1 Design, system architecture and source code 280 1 Contracts 275 1 Records of trial runs 281 1 Others, specify 282		
271 1 time sheets 272 1 Design of experiments 273 1 Project records, laboratory notebooks 273 1 Project records, laboratory notebooks 274 1 Design, system architecture and source code 280 1 Contracts 275 1 Records of trial runs 281 1 Others, specify 282 283	270 1 X Project planning documents	276 1 X Progress reports, minutes of project meetings
273 1 Project records, laboratory notebooks 279 1 Design, system architecture and source code 280 1 Records of trial runs 281 1 Others, specify 282 Section E - Project cost Project expenditures claimed in the year: 285 Salary or wages 100,000	time sheets	
274 1 Design, system architecture and source code 280 280 1 Contracts 281 1 Records of trial runs 281 1 Others, specify 282 Section E - Project cost Project expenditures claimed in the year: 285 Salary or wages 100,000	272 1 Design of experiments	278 1 Photographs and videos
275 1 Records of trial runs 281 281 281 281 281 281 281 281 281 281 281 281 281 281 281 281 281 281 281 282 283 284 285 Salary or wages 100,000 285 Salary or wages 100,000 100,000	273 1 Project records, laboratory notebooks	279 1 Samples, prototypes, scrap or other artefacts
Section E – Project cost Project expenditures claimed in the year: 285 Salary or wages 100,000 \$	274 1 Design, system architecture and source code	280 1 Contracts
Project expenditures claimed in the year: 285 Salary or wages 100,000 \$ 290 100,000 \$ 100,000 \$	275 1 Records of trial runs	281 1 Others, specify 282
Project expenditures claimed in the year: 285 Salary or wages 100,000 \$ 290 100,000 \$ 100,000 \$	Section E - Project cost	
285 Salary or wages		
		100.000
		¢

......

289 Overhead and other expenses (if you use the traditional method in Part 3)

287 SR&ED contracts

(c) MEUK Corporation 2011

\$

\$

Part 2 - Project information (continued)

Complete a separate Part 2 for each project claimed this year.

Please see D-4.1 - D-4.2 for	53
full Project Description	

Section A – Project identification				
200 Project title (and identification code if applicable))			
703 - Plant breeding - new cultivar				
202 Project start date 2007-02	204 Completion or expected completion date	206 Field of science (See guide for li		
Year Month	Year Month	1.06.08	Plant sciences, bot	tany
Project history			·	
208 1 X Continuation of a previously claimed proje	ect 210 1 First claim for the project			
218 Was any of the work done jointly or in collaboration	ion with other businesses?		1 🗌 Yes	2 X No
If you answered yes to line 218, complete lines 200 a	nd 221.			
220 N	ames of the businesses		221 BN	
1				
The work was carried out (check any that apply)				
222 1 By analysis only 226 1 X In a commercial plant or facility				
223 1 In a laboratory 228 1 Others, specify 229				
1 In a dedicated research facility				
Purpose of the work To achieve technological advancement for improving existing materials, devices, pro (Go to Section B – Experimental develop	oducts or processes. 232 1		it of scientific knowledge Basic or applied researc	

2008-12-31

Section B – Experimental development

The technological advancement you are trying to achieve with this work will result in:					
	Ma	terials, devices, or products		Processes	
The development of new	235	1	236	1	
The improvement of existing	237	1 🗴	238	1	

What technological advancements were you trying to achieve? (Maximum 35 lines)			
Scientific or Technological Objectives:			
[AUTHOR'S NOTE: REPRODUCED FROM THE CRA PLANT BREEDING & SEED INDUSTRY SR&ED			
PROGRAM GUIDANCE PAPER - AVAILABLE FROM THE SECTOR-SPECIFIC GUIDES ON THE CRA			
WEBSITE AT http://www.cra-arc.gc.ca/taxcredit/sred/sector-e.html]			
The objectives of this plant breeding project are to develop soybean			
cultivars, for the 2600 to 3000 heat unit areas of Eastern Canada, that offer			
the following improvements over existing cultivars:			
10% improved yield over currently available cultivars			
10% improved lodging resistance over currently available cultivars			
• no sacrifice of resistance to leaf disease(s) or Phytophthora root			
rot.			
[AUTHOR'S NOTE: AS ILLUSTRATED ABOVE AND BELOW, IDEALLY THE TAXPAYER WOULD			
ATTEMPT TO QUANTIFY STANDARD PRACTICE PERFORMANCE LEVELS & METHODS AND THEN			
BENCHMARK THESE IMPROVEMENTS AGAINST THEM.]			
Technology or Knowledge Base Level:			
Soybeans are typically accompanied by maturity delays or increased susceptibly			
to lodging and disease(s).			
The scientific/technological advancement expected in this plant-breeding			
project is the development of a new cultivar that embodies the genetic traits			

What technological advancements were you trying to achieve? (Maximum 35 line	es)
--	-----

for higher yield and resistance to lodging in a genotypic combination that		
surpasses the performance features of existing cultivars without compromising		
disease resistance.		
Our base level knowledge for this project is derived from our development of		
crosses and advanced lines in previous years' projects. This work provided us		
with desirable traits in our F3 and F6 lines, thus providing a starting point		
for our current research.		
[AUTHOR'S NOTE: IDEALLY, THE TAXPAYER WOULD ATTEMPT TO QUANTIFY PROGRESS MADE		
TO DATE IN ISOLATING DESIRABLE TRAITS IN THEIR PREVIOUS GENETIC LINES.]		
[AUTHOR'S NOTE: IDEALLY, THE TAXPAYER WOULD ATTEMPT TO IDENTIFY THE SPECIFIC		
METHODS OR VARIABLES WHICH CREATE THE PERCEIVED LIMITATIONS WITH RESPECT TO		
OBTAINING THE STATED OBJECTIVE(S).]		

242 What technological obstacles did you have to overcome to achieve those advancements? (Maximum 35 lines)

Uncertainty #1: feasibility of genetic traits

The scientific/technological uncertainty relates to the feasibility of

combining the desirable genetic traits from different germplasm sources into a

superior performing cultivar out of thousands of possible segregating

genotypic outcomes resulting from hundreds of crosses.

Uncertainty #2: Maintain disease resistance

Additionally, scientific uncertainty relates to the feasibility of achieving

this result without sacrificing disease resistance, which is often compromised

with yield improvements.

244 What work did you perform in the tax year to overcome those technological obstacles? (Summarize the systematic investigation) (Maximum 70 lines)

Activity #1-1 in Fiscal Year ending 2006-12-31: Experimental crosses
Description of work performed:
During the current taxation year (2006), the work undertaken and progress
attained included:
- 120 new parental crosses were made in the nursery
- 4500 F3 lines meeting our selection criteria from previous crosses were
advanced to F6 by single seed descent using winter nurseries
- 5000 F6 Lines originating from previous crosses were tested in preliminary
yield trials at 2 locations and 200 were selected that met the criteria for
further advancement
- 150 advanced lines from previous crosses were tested in advanced trials in 4
locations and 6 elite performers were selected for wide area testing
[AUTHOR'S NOTE: IDEALLY, WE WOULD ALSO EXPLAIN WHY ANY OF THE ABOVE DECISIONS
WERE MADE.]
Conclusions:
Incremental advances were made towards some of the intended scientific
objectives:
• the enhanced yield trait was more successfully transferred from (xx)
genotypes than from (yy) or (zz) genotypes
 there was a negative correlation between yield and early maturity (i.e.
2900 heat units)
[AUTHOR'S NOTE: IDEALLY, WE WOULD COMPARE RESULTS TO INITIAL EXPECTATIONS AND
PROVIDE EXPLANATIONS OR "CONCLUSIONS" FOR RESULTS THAT WERE UNEXPECTED AT THE
OUTSET OF THE WORK. THESE "CONCLUSIONS" ARE MORE RELEVANT TO DETERMINING
SR&ED ELIGIBILITY THAN MERELY LISTING THE "RESULTS" (I.E. WHETHER THE END
PRODUCT ITSELF WAS SUCCESSFUL).]

Activity #2-1 in Fiscal Year ending 2007-12-31: Disease testing

What work did you perform in the tax year to overcome those technological obstacles? (Summarize the systematic investigation) (Maximum 70 lines)	3)
escription of work performed:	
finished lines originating from previous crosses were tested in	
re-commercial co-op trials at 8 locations, and tested in official public	
o-op registration trials. Official tests will be used to corroborate our	
isease, quality and performance results and select candidates for	
egistration and commercialization.	
onclusions:	
esistance to soil borne diseases (e.g. Sclerotinia, Alternaria) was	
nfluenced more by plant stature (i.e. lodging trait) than the presence of the	
isease resistance gene itself due to the closer proximity of foliage to the	
oil in lodged specimens. As a result of this work five lines yielded at	
east 5% above commercial check varieties, with improved lodging and	
cceptable disease resistance.	
AUTHOR'S NOTE: IDEALLY, WE WOULD COMPARE RESULTS TO INITIAL EXPECTATIONS AND	
PROVIDE EXPLANATIONS OR CONCLUSIONS.]	
ECOMMENDATIONS ON SUPPORTING TECHNICAL DOCUMENTATION	
THE R&D BASE PROGRAM ALSO ALLOWS USERS TO CROSS REFERENCE SUPPORTING	
NFORMATION WHICH IS GENERATED OVER THE COURSE OF THE WORK.	
THE TYPE OF RECORDS REQUIRED WOULD BE THOSE THAT WOULD NORMALLY BE GENERATED	
IN THE COURSE OF UNDERTAKING PLANT BREEDING. AS A GUIDELINE, SOME EXAMPLES OF	
THE COURSE OF UNDERTAKING FLANT EXCEPTING. AS A GUIDEDINE, SOME EXAMPLES OF	
EVIEW BY THE CANADA REVENUE AGENCY (CRA) MAY INCLUDE THE FOLLOWING:	
BACKGROUND LITERATURE RELATED TO A PROJECT OBJECTIVES AND PLAN	
RECORD OF GENETIC CROSSES -NURSERY DATA BOOKS -RECORDS OF FIELD	
RECORD OF GENETIC ENCODED NORDERT DATA BOOKS 'RIALS -NOTES ON EXPERIMENTAL PROCEDURES -PROJECT NOTE BOOKS AND/OR	
UANTITATIVE MEASUREMENT DATA -RESULTS OF STATISTICAL ANALYSES -ANY	
THER RELEVANT MATERIAL/INFORMATION (E.G. PHOTOS) THAT SUBSTANTIATES THE SR&ED	
IN SOLUTION IN STATISTICS (S.C. THOTOS, THE SOLUTION STAL SOLUTION STALLS THE STALLS	
AUTHOR'S NOTE: FOR ADDITIONAL "AGRICULTURAL" AND "LIFE SCIENCE" EXAMPLES	
<pre>/ISIT, www.rdbase.net]</pre>	

Section C – Basic or applied research

250 Describe the scientific knowledge that you were trying to advance. (Maximum 35 lines)

252 Summarize the work performed in the tax year, and explain how that work contributed to the advancement of scientific knowledge. (Summarize the systematic investigation) (*Maximum 70 lines*)

Section D – Additional project information			
Who prepared the responses for Section B or Section C?			
253 1 X Employee directly involved in the project 254 Name			
255 1 Other employee of the company 256 Name			
257 1 External consultant 258 Name	259 Firm		
List three key employees directly involved in the project and indicate their			
260 Names	261 Qualifications/experience and position title		
1 Al Nobel	P.Eng/Chmical Engineering		
2 Al Einstein	PhD./Physics		
3 Nick Tesla	CET/Electrical technology		
Are you claiming expenditures for SR&ED performed by people other	er than your employees?		
If you answered yes to line 267, complete lines 268 and 269.	000		
268 Names of individuals or companies	269 Social Insurance Number or Business Number		
1			
What evidence do you have to support your claim? (Check any that apply You do not need to submit the evidence with the claim. However, you are			
270 1 X Project planning documents	276 1 X Progress reports, minutes of project meetings		
1 Records of resources allocated to the project, time sheets 277 1 Test protocols, test data, analysis of test results, conclusions			
272 1 Design of experiments	278 1 Photographs and videos		
273 1 X Project records, laboratory notebooks	279 1 Samples, prototypes, scrap or other artefacts		
1 Design, system architecture and source code 280 1 Contracts			
275 1 Records of trial runs	281 1 Others, specify 282		
Section E – Project cost			
Project expenditures claimed in the year:			
285 Salary or wages			
286 Materials consumed and transformed	\$		

289 Overhead and other expenses (if you use the traditional method in Part 3)	

287 SR&ED contracts

\$

\$

. . .